8. Find non-zero values of x satisfying the matrix equation: $$x \begin{bmatrix} 2x & 2 \\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x \\ 4 & 4x \end{bmatrix} = 2 \begin{bmatrix} (x^2 + 8) & 24 \\ (10) & 6x \end{bmatrix}.$$ ## Solution: Given, $$x \begin{bmatrix} 2x & 2 \\ 3 & x \end{bmatrix} + 2 \begin{bmatrix} 8 & 5x \\ 4 & 4x \end{bmatrix} = 2 \begin{bmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 2x^2 & 2x \\ 3x & x^2 \end{bmatrix} + \begin{bmatrix} 16 & 10x \\ 8 & 8x \end{bmatrix} = \begin{bmatrix} 2x^2 + 16 & 48 \\ 20 & 12x \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 2x^2 + 16 & 2x + 10x \\ 3x + 8 & x^2 + 8x \end{bmatrix} = \begin{bmatrix} 2x^2 + 16 & 48 \\ 20 & 12x \end{bmatrix}$$ On comparing the corresponding elements, we get $$2x + 10x = 48$$ $$12x = 48$$ Thus, $$x = 4$$ It's also seen that this value od x also satisfies the equation 3x + 8 = 20 and $x^2 + 8x = 12x$. Therefore, x = 4 (common) is the solution of the given matrix equation. $$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$